Code, Scholarship, and Criticism: When is Coding Scholarship and

When is it Not?

Joris J. van Zundert (corresponding author)

Huygens Institute for the History of the Netherlands
Royal Netherlands Academy of Arts and Sciences
The Hague, The Netherlands

joris.van.zundert@huygens.knaw.nl

Ronald Haentjens-Dekker

Huygens Institute for the History of the Netherlands
Royal Netherlands Academy of Arts and Sciences
The Hague, The Netherlands

ronald.dekker@huygens.knaw.nl



Abstract

What is the scholarly nature of code and how do we evaluate the scholarship
involved with coding? Our claim is that the humanities need an urgent answer to
these questions given the increasing softwarization of both society and scholarship
that pushes the boundaries of the methods and objects of study of the humanities.
We argue that as a result there is a need to develop code criticism as a critical and
reflexive tool within the humanities. Code criticism is described and positioned with
respect to Critical Code Studies, textual criticism, literary criticism, tool and interface
critique. Finally we outline an approach to code criticism based on ideas of reciprocal
inquiry and of a continuum of literacies that connects code, code criticism, textual

criticism, and literature.



The Softwarization of Scholarship

When does a particular piece of code or some code object acquire a scholarly
nature? What properties or qualities force us to consider the source code of
software as a scholarly object of study? And if we can determine those properties,
then how do we evaluate the scholarly merit of these code objects? These and
similar questions as well as some of the potential answers to them are what we want
to consider in this contribution. However, before we turn to these questions,
foremost we need to answer the question why code deserves scholarly attention at
all, as in past decades it has not been a given at all that code is indeed of scholarly
interest (cf. for instance Bauer 2011). We contend that there are at least two
approaches towards arguing that there is a rationale for the humanities to consider
code as a scholarly object of study and to consider code as a scholarly object itself.
The first is related to a general softwarization of society as described by Berry
(2014). The second is a more specific realization of this trend that relates to how we
understand tools as instruments applied in research.

The softwarization of society that Berry argues for has also been vividly
described by Steven E. Jones (2014) who refers to it as eversion. This eversion is a
term coined in the 2007 novel Spook County by William Gibson, who is otherwise
known as the author of the cyberpunk cult novel Neuromancer. The concept of
eversion serves to identify the process of cyberspace turning itself inside out and
flowing out into society beyond the point where either is truly separable (Jones
2014:28). Where prior to 2007 cyberspace was an alternate but separate and virtual
reality into which human existence in some visions might eventually even

transmigrate, after 2007 the ubiquity of access points to the digital realm, the



omnipresence of embedded computer technology, and the primacy of digital
streams as carriers of information let the worlds of the virtual and of reality merge
and intersect to a point that it is very hard to tell them apart. Jones marks the
appearance of the smartphone around 2007 as the point of articulation between
these realizations of digitality. Berry describes in a similar vein the pervasiveness of
computation and digital information, and questions it from a perspective of Critical
Theory. At this point in time then cultural artifacts and the processes of creation and
interpretation tied to these artifacts are as much digital as they are not. Arguably
therefore, humanities should concern itself with the humanistic status and
interpretation of such artifacts and the creative processes they result from.

Concerns with how pervasive forms of computation affect society are raised
often in the context or as a result of Critical Theory. People such as Richard Coyne
(1995), David Berry (2014), Mark Marino (2006), and Tara McPherson (2012)
approach the digital from a socio-philosophic vantage point and interrogate how
social context shapes software and how it in turn affects society and the relation of
humans to digital technology—mostly with the aim to critically examine whether the
technology liberates or limits the potential for personal, cultural, or social freedom
and development. This omnipresent and massive impact of the digital on society and
culture should also be of concern to the humanities in and of itself because it deeply
affects the socio-technical processes by which cultural artifacts are created and
interpreted, thus affecting the object of study of the humanities.

We argue however that there is also a more narrow methodological rationale
for the study of code in the humanities. Just as software and digital information

pervades society, it emerges in the humanities virtually everywhere. It appears both



as source and object of study, e.g. in the form of digital data and information, and as
resource, in the form of tools and infrastructure. If code is thus an emerging object
and method of study—such as text is for the humanities—it should arguably be the
subject of scholarly examination. In rejoinder to this the metaphor is often invoked
that one does not need to understand an engine to drive a car. That however is an
improper metaphor for software. To understand why, we refer to an article by lan
Hacking published in 1981: ‘Do We See Through a Microscope?’ Hacking’s argument
centers on the question of how to establish the reality of what we see with a
microscope. Fundamentally there is no way of knowing this. As humans we cannot
empirically verify or testify that there is an object under the microscope when it is
too small to sense. We trust however that the theory of optics holds, and that
therefore the image we perceive is true to the nature of the object. We accept and
trust that the way light passes through a system of lenses is accurately described and
predicted by the theory of optics. Yet this remains ‘just’ a theory, despite the fact
that it has repeatedly held up under testing. But exactly because no one has yet
been able to prove that the theory is incorrect regarding the behavior of light in a
microscope, we trust that what we see is what is actually there. Or in Hacking’s
words: ‘It may seem that any statement about what is seen with a microscope is
theory-loaded; loaded with the theory of optics or other radiation. | disagree. One
needs theory to make a microscope. You do not need theory to use one.’

Hacking’s remark sounds very similar indeed to ‘One needs computer literacy
to make software. You do not need computer literacy to use it.” The crucial
difference is that code and software are not governed by a law of nature in the same

way optics are. If the curvature of a lens is incorrect a user will get a foggy or blurred



picture of a plant cell (for instance). But it will remain a blurred picture of a plant
cell. No matter how broken the lens, it will not transform a picture of a plant cell into
a picture of the facetted eye of an insect. Software code by contrast is written or
built by humans and is not bound to natural rules of proper and verified behavior.
Most mobile phones carry an inbuilt lens these days, with a camera app to take
pictures. It would be rather easy to change the camera’s software in such a way that
whenever a user takes a picture some random picture on the Internet would be
presented as the photograph. Thus what Hacking justifiably concludes for
microscopes on the basis of a general and well-supported theory of optics, does not
hold for software. In both cases there is a situation of trust. In the case of lenses we
trust that a well-verified theory of light and optics will hold and that the nature of
light and its interactions with materials will not change overnight. In the case of
software there is a trust that the result of creative coding work will do what the
creator of that work says it will do. But software tools are lenses of a different kind:
at the time of my writing according to TextMate (a simple text editor for Mac OS)
this text up to here has 1,167 words, according to MS Word it has 1,174. If
something as deceptively simple as counting the number of words in documents
gives different results in different pieces of software, how do we trust complicated
topic modeling software like Mallet that produces hundreds of clusters of terms as
suggested topics found in a corpus? Software is governed not by laws of nature, but
by the rules that are programmed into it by the engineer, that can be set by anyone
having access to the design process of the software, and that can result in incredibly
complex heuristics and algorithms. This fact should by itself warrant some systematic

approach to critiquing code. But especially now that more digital tools are getting



integrated into the methodology of humanities, the adequacy and validity of

analyses depend to a certain extent on an adequate understanding of such specific

rules.

Scholarly Assumptions in Software

To make this more concrete let us study the case of CollateX (http://collatex.net/), a
piece of software under active development at the Huygens Institute for the History
of the Netherlands (https://www.huygens.knaw.nl/). CollateX is—as the name
suggests—a collation engine. It is essentially an algorithm that, given a number of
texts that are largely but not exactly the same, will align the parts of texts that run
parallel, or match as this is usually called. For instance, if the algorithm is given the

following texts:

1) the black cat hops over the red dog
2) the white cat hops over the dog

3) the black cat hops over the red cat

it would align these witnesses (as variant texts are usually called in textual
scholarship) as follows:

1) the black cathopsoverthe red dog

2) the white cat hops overthe - dog

3) the black cathopsoverthe red cat



Collation is a scholarly task central to the field of textual scholarship, itself concerned
with establishing a solidly argued representation of a given text. Because the process
of collation is labor intensive, repetitive, tedious, and error prone (Robinson 1989), it
is a good candidate for automation. As with all software, any such automation will
result in an implementation of an algorithm that to a certain extent rests on
particular assumptions (Lehman 2000). The current algorithm of CollateX* makes

three tacit assumptions on the heuristics of alignment:

1) It is desirable to minimize the number of differences between witnesses
2) Phenomena that are shared across most witnesses should be preserved

3) The number and order of witnesses is arbitrary

Furthermore the algorithm of CollateX is based on at least one axiom that states that
it is computationally infeasible to distinguish between a transposition and a
combination of substitution and deletion. That is, if the algorithm finds the following

alignment:

1) the cat hops over the black dog

2) the dog hops over the black cat

It is nigh impossible for any computational algorithm to decide whether the cat and
dog in the first sentence were switched (textual scholars speak of a transposition) or
if either of them was individually replaced (i.e. substituted by a consecutive deletion

and addition).



The point here is not whether these assumptions are correct, but rather that
they exist at all. They represent rules and choices that could have been different as a
result of different scholarly reasoning and argument. Assumptions are inscribed
tacitly in code rather than being explicitly mentioned or described by it. It would be
very hard indeed even for skilled engineers to reverse engineer or read the code so
that these assumptions become apparent. Yet they are part of the very rationale
behind the mechanism that fulfills the scholarly task of alignment.

In the case of CollateX the assumptions, expressed not so much in the code
as through its performance, may not be shared by each textual scholar. They are
indeed not laws of nature, nor are they generic mathematically proven principles.
Especially the axiom concerning transpositions could be subject to scholarly debate.
A human reader will apprehend quickly that in our example above the cat and the
dog were transposed. But unless evidence external to the texts shows up,
fundamentally this is not deducible with complete certainty—it could have been that
the cat was replaced with another dog. The apprehension of the human reader is in
fact an assumption, conjecture based on intuition. A rule of thumb could be that
when more words are involved in a potential transposition (so longer fragments are
switched) and the fewer words there are between the two potentially transposed
fragments, the likelier it is that a deliberate transposition occurred. It is unlikely that
an author would for instance switch around a the at the beginning of a text with a
the at the end of that text. If we find ‘It was a dark and stormy night’ in one witness
at the beginning of a text, and in another witness at the end, it is more likely that
deliberate transposition was the cause. It would be very time consuming to take this

rule of thumb into account when computing the alignment of witnesses, because the



number of comparisons that need to be performed by the code would grow
exponentially. Hence the axiom: it is fundamentally impossible to know from the
texts alone if a transposition happened, and it is computationally highly costly to
compute all potential transpositions, thus it is computationally infeasible to
distinguish between a transposition or two independent substitutions.

The third assumption, which posits that the alignment should be
independent of the number and order of witnesses, is also debatable from the
perspective of textual scholarship. Suppose that it is clear from external evidence—
e.g. from the bindings of a manuscript or the type of materials used—that a
particular witness is the oldest. In those circumstances it becomes a legitimate
scholarly question whether or not that witness should be a guiding text, or a base
text as it is called when specifically used as a guide for decision making in the process
of alignment (Roelli 2015) In unmarked situations however it is assumed that
baseless collation is preferable (cf. Andrews & Macé 2013). During the development
of CollateX great care was taken therefore to prevent it from presenting a result that
is in some ways biased or colored by the particulars of one specific witness. Indeed

this feature became a unique selling point.

Scholarly Code Criticism

The assumptions that underpin the code of specific software in textual scholarship
ought not to be the idiosyncratic musings and intuitions of individual programmers.
In the case of CollateX assumptions were inferred from close and repeated
conversations between the lead developer and a variety of textual scholars who had

a particular interest and experience with text collation. These assumptions are in this



sense a result of aggregated, carefully interpreted scholarly knowledge re-inscribed
in code. We would argue that it is this process of aggregation, interpretation, and re-
inscription of knowledge that lends the code of CollateX a particular scholarly
nature. Insofar as interfaces and code bases can also be thought of as arguments (cf.
Galey & Ruecker 2010; Van Zundert 2015) it is these assumptions by which the code
of CollateX captures and adds to the ongoing scholarly debate on collation. As
argued above however, the argument that code makes is very implicit. How can
scholars—or for that matter other programmers—examine and critique this code
and these assumptions as an integral part of academic discourse?

To us this suggests that there is a need for a method or a framework within
the humanities to systematically explore and validate scientific software engineered
for and used in the humanities. No such agreed upon formal method or framework
for critical evaluation of code exists. Nor is there an agreed upon method to share
any results of the critical evaluation of code. As Mark Marino has stated in a field
report on critical code studies (CCS): ‘there remains a considerable amount of work
to develop the frameworks for discussing code’ (Marino 2014).

Marino’s report presents a concise history of CCS that suggests that they are
indeed an application of critical theory. CCS studies code and the social context and
processes that give rise to particular forms of code. A good example is Tara
McPherson’s 2012 contribution to Debates in Digital Humanities, titled ‘Why Are the
Digital Humanities So White? or Thinking the Histories of Race and Computation’
(McPherson 2012). Read superficially it is an article that makes computer engineers
roll their eyes and sigh: sure, UNIX is racist. However that is not McPherson’s

argument:



I am not arguing that the programmers creating UNIX at Bell Labs and in Berkeley were
consciously encoding new modes of racism and racial understanding into digital systems. [...]
Rather, | am highlighting the ways in which the organization of information and capital in the
1960s powerfully responds—across many registers—to the struggles for racial justice and
democracy that so categorized the United States at the time. [...] The emergence of covert
racism and its rhetoric of color blindness are not so much intentional as systemic.
Computation is a primary delivery method of these new systems, and it seems at best naive
to imagine that cultural and computational operating systems don’t mutually infect one

another.

Another clear concern of CCS is the aesthetics of code and code-as-text. Marino is

interested in reading code as text:

I would like to propose that we no longer speak of the code as a text in metaphorical terms,
but that we begin to analyze and explicate code as a text, as a sign system with its own
rhetoric, as verbal communication that possesses significance in excess of its functional

utility.

Given this proposition it is understandable that CCS is fascinated with
poststructuralism-inspired uses and interpretations of code, such as Alan Sondheim’s
concept of codework that mixes computer code and text and in which computer
code thus additionally becomes a medium for artistic expression (Wark 2001).
Although we are certainly convinced that code criticism from a critical theory
approach should be part of any framework for evaluating the scholarly qualities of
code in the humanities, the approaches and examples from the field of critical code
studies leave something to be desired for. Our criticism runs parallel to a remark

Evan Buswell made during a HASTAC 2011 CCS event (Marino 2014). Buswell stated



that CCS cannot only deal with the arbitrary elements of code, because that would
relegate code criticism to aesthetics only. This was a reaction to Mark Marino’s
suggestion to try to read text as code and use variables as meaning forming
elements and to see how this would give expression to the meaning of code. Buswell
was quick to note that variable names are—through the for information technology
pivotal technique of indirection—arbitrary in code. Variable names are wrappers and
boxes: what is printed on them needs not to have an intrinsic relation what is in

them. Thus if one reads in e.g. JavaScript:

var welcome_message = ‘Welcome to my homepage!’;

It simply means that there is a variable with the name welcome message that holds

the text ‘Welcome to my homepage!’ . However, that name is arbitrary. The code:

var bananas = ‘Welcome to my homepage!’;

creates the same result (which is that there is a variable with the text value
‘Welcome to my homepage!’). Thus the name of the variable does not entail
anything about the value of the variable or its meaning within the code.

Mark Marino’s argument was based on the assumption that developers
usually use speaking names for variables, precisely because it keeps the code
somewhat readable, and hopefully clear to other developers. Under these conditions
variable names may indeed tell us something about the assumptions and norms

connected to the context in which the code was developed. If the variable was



named opening_sentence instead of welcome_message this may reveal something
about the intention or frame of mind of the developer. The former might indicate an
engineer foremost focused on text structure, the latter might suggest that the
programmer was thinking more about user interaction.

Thus there is certainly reason to do as Marino suggests and read code also
simply as “a text”. However, code is a text that performs. It also represents a
program that can be executed, and fundamentally variable names do not reveal this
performativity. They do not reveal necessarily the aim of the code, nor how it
operates. Thus, as Buswell concluded, student engineers may learn from CCS to
carefully choose their variable names because they will be working with culturally
sensitive programmers in various cultural contexts and settings—but “all the while
there will be an invisible line between CCS and CS, protecting the core from the
periphery, insulating and separating from critique the power structure of code itself,
and constructing a discourse of good code and bad code to go along with the
discourse of good business and bad business that tends to dominate naive anti-
capitalist critique.”

As a framework for code criticism then, critical code studies seems to lack a
rigorous method for examining and critically interrogating actual code beyond
reading the ‘code as text’. In addressing this it would make sense to draw a parallel
between the interdependent relationship of textual criticism and literary criticism on
the one hand and between code criticism and critical code studies on the other
hand. Literary criticism is the application of critical theory and aesthetics to
literature. It is occupied with the interpretation of literature, its contextualized

meaning, its cultural inwardly and outwardly influences, its development over time,



etc. Textual criticism is less about reception, meaning, cultural situatedness, and
writerly® text. Rather it is the critical skill of establishing a well-argued

representation of a text. Though ‘fact’ in the light of poststructuralist theory is a
problematic term to say the least, it is not unreasonable to posit that textual
criticism is pre-occupied with scientific textual fact finding and accountability: textual
criticism tries to establish as close to a ‘factual’ representation as possible of a text
through a scientifically accountable process (cf. McGann 2013).

Arguably a framework for scholarly evaluation of code should in a similar vein
encompass both components of critical code studies and components that are more
directly aimed at factual code review. The critical code studies component would
focus on answering questions of broader socio-technical impact. Is there an ideology
underlying this code? What are the cultural assumptions and biases apparent in the
code? What was the social context of its development? The code criticism
component would aim at critically examining the actual code and its scholarly or
scientific intentions. What is the stated purpose of this code? Which scholarly task—
perhaps in relation to the concept of scholarly primitives (Unsworth 2000)—is it
trying to accomplish? How well is it accomplishing that task? What concepts and
relations are modeled into the code?

Code criticism in this sense is first of all pragmatic. If literary criticism asks
the question ‘What does this mean?’ and critical code studies ask ‘How does this
code affect us?’, then textual criticism asks ‘What was written here?’ and code
criticism asks ‘What does this code do?’. Code criticism deliberately poses

deceptively simple questions to code, because this helps to reveal the scholarly



status of code. As an example we can compare CollateX with eLaborate, another tool
developed for the use of textual scholars.

Elaborate: what does it do, and how does it do that? Elaborate is a tool for
digital transcription created and actively maintained by the Huygens Institute for the
History of the Netherlands (http://elaborate.huygens.knaw.nl/). Transcription is
undeniably a scientifically valid and valuable primitive of humanities, especially with
regard to scholarly editing and philology. Do we therefore deem elLaborate to be a
scholarly tool? The software supports the scholarly task of transcription. Does this
mean that the software and the code itself are scholarly and thus examples of
scholarship? The key is in the distinction between enabling and performing tasks.
Elaborate enables the scholarly task of transcription, but the transcription itself and
all the scholarly skills and decisions tied to it are still performed by the user.
ELaborate is not somehow magically more adequate in registering the keystrokes of
a scholarly editor than WordPress, Word, TextMate, or any other text editor. It has a
number of features that greatly facilitate the task, and allow the editor to really
focus on it. Otherwise it does its best to get as much out of the way of the scholarly
editor as it can. It has less feature clutter than for instance Word, it has a centralized
and institutionally backed repository for all its data, it is web based, and so forth. In
comparison with other tools this means that there is seemingly always one specific
feature that makes elLaborate a better fit for the scholarly task than most other text
editors. Yet it would be hard to argue that the code propelling eLaborate is scholarly
in itself and by itself. Still eLaborate is in some sense a scholarly achievement:
scholarly thought and argument was part of the process of its creation and the

design of its specific functionalities (Beaulieu et al. 2012).3



Unlike eLaborate, CollateX performs a scholarly task. Based on the tacit
assumptions built into the code the algorithm of CollateX takes a number of
scholarly decisions, which essentially decide how multiple text witnesses should be
aligned. Scholarly responsibilities are handed off more extensively to the code in this
case. We can therefore argue that the code itself has more of a scholarly nature than
the code for eLaborate. That in fact the code represents scholarship and is itself a
scholarly object. This is no different from a monograph or print edition, each one a
scholarly object whose scholarly nature arises from the arguments they constitute
and represent.

Critically examining this argument and the scholarly nature of the code itself
is not straightforward however. We have already pointed to the mostly tacit nature
of the scholarly assumptions built into code. But code is unintentionally covert in
other ways as well. Engineers often talk about the model that underlies their code.

Mostly the model component of the code is that which comes to represent
the conceptual or phenomenological model of the problem domain. That is: the
concepts, the relations and the operations that mimic the problem, objects and
processes the software developers are trying to automate or solve on behalf of a
client or, in our case, a researcher. In the case of eLaborate then, the model has
coded objects such as Transcription and Annotation. Annotation objects in the code
may have associated functions or methods, such as create, update, or delete. Of
course all the components are needed in a meticulously orchestrated combination
to make the software function, all components are in that sense essential to it. Any
framework for code criticism cannot therefor eschew part of some body of code.

However, the components that capture the domain model are probably the most



closely associated with inscribing the conceptual model of the researcher into code,
as opposed to data storage components or visualization components.*

Critiquing the domain model, or even perusing it from the code can be hard
as it may be unintentionally obfuscated. It may be as tacitly expressed in the code as
the assumptions underpinning it, or it may be confusingly cloaked by a different
expression. Part of the algorithm of CollateX for instance is based on a decision tree.
This tree is used to recall which decisions were made by the algorithm to come to an
alignment between witnesses. If a new witness needs to be added into the
comparison, previous alignment solutions can be compared to favor one solution.
For reasons of performance and scalability the decision tree is not expressed in the
code as a tree however. Instead the engineer chose to use a matrix that will deliver
the same power of decision but at a very much lower performance penalty. Reading
directly from the code it would be hard, or at least considerably confusing, to see
that a matrix was used to perform the function of a decision tree.

Thus just as with the variable names that can be arbitrarily chosen and thus
obfuscating, code may be for good reasons unintentionally enigmatic. The nature of
code in this sense seems to resemble poetry more than prose. Poetry sometimes
intentionally uses enigmatic or hermetic language, forcing the reader to reread and
rethink possible meanings. Code will in general be less intentionally enigmatic, but
will sometimes be no less hermetic. Sometimes such hermetic code becomes a goal
in itself, such as when coders try to come up with one-liners: tiny algorithms of one
line of code that perform certain—sometimes incredibly—complex tasks. Arguably
one of the best known examples is ‘10 PRINT CHR$(205.5+RND(1)); : GOTO 10, to

which even a full book publication was dedicated (Montfort et al. 2012). Such witty



solutions may earn particular admiration of other coders, the solution being
regarded as a particular ‘elegant’ one. Yet the “coolness” of the solution may result
in code that is particular obfuscated and hard to read, and the actual algorithm may
also be counter intuitive yet mathematically highly efficient, such as in the case of

the Quicksort algorithm (https://en.wikipedia.org/wiki/Quicksort).

Criticism in a Continuum of Literacies
How then do we critically examine code that may be particularly hard to read,
scrutinize, and understand? At the very least an attempt should be made at reading
the code, even if simply to establish the degree of readability of the code, because
this is valuable information for criticism too. If the code is nigh incomprehensible,
what does this mean? Can the reasons for possible intentional obfuscation be
deduced and/or reasonably established? Is the illegibility a result of unskilled
coding? Obviously inline comments and external documentation should offer help in
determining the intention of the code as well. Also establishing the software
development methodology used can reveal useful insights. There are various
methodologies to build software, from highly formalized and rigorous to fully
pragmatic “cowboy coding”. Some methodologies are bound to be a better fit than
others for the heterogeneous nature of humanities data and research questions (Van
Zundert 2012).

Mostly however: why not talk to the creators of the code themselves?
Assuming that engineers indeed apply current good practices, software development
is a highly dialectic practice. The adequacy and effectiveness of code is mostly

determined by how well the model that is inscribed in the code fits the domain



model of the problem or task that the software was developed for. To deduce a best
fit model engineers should go to great lengths. Analysis and design for modeling in
most current software development methodologies will involve deep client and/or
user interaction. That is: during the design phase engineers will interview the client
over and over again to explore the exact properties of the domain model. And during
any implementation phase engineers will in all likelihood repeatedly expose the
execution of the code to the scrutiny of the researcher and will adapt the design
iteratively to what the researcher reports back as to shortcomings, omissions etc.
Thus the model is designed, tweaked, and tuned in a continuous communicative and
dialectic feedback cycle between developers and researchers.

If the engineering of a model is governed by dialectic the most adequate
mode of scholarly code criticism could be parallel. As an argument code may be
adequate but obscure. In such cases a good way of establishing the model tacitly
underlying the code could be to reverse engineer it through discourse. Thus by
reversing the dynamic of the dialogue we may understand software in the same way
as its development was articulated and argued: by a deep and continuous, even
“intimate” as Frabetti (2012) suggests, dialectic. What is mirrored during the phases
of creation and criticism is the role of the interviewer and interviewee.

A similar parallelism and mirroring arises in another potential avenue for
critically examining code. It is a good practice in code engineering to develop not just
code, but also a test suite for that code. A test suite or harness is a set of tests
expressed as code, that can be run to check that software is working correctly.
Engineers can in this way guarantee the correct working of the code. Tests are used

to check the workflow, to test against critical conditions, to inspect certain expected



output for given input, to test the formal constraints of a model, and so forth. It may
turn out to be as valuable for code criticism to examine the test suites that
accompany code as the contents of the code itself. Much may be gauged from these
tests about assumptions, corner cases, conditions, flow, limitations, and intentions
of the code. But an even more intriguing application of test suites might be for
scholarly code critics to develop these suites themselves. Currently test suites and
automated tests for software are tools of the engineer. But there is no reason why
the frameworks that help engineers to control, check, and validate their work, would
not be used to probe, explore, and test the same software by code critics. Instead of
facing the engineer, test harnesses might just as well face the critic and user. Several
people involved with critical code studies have expressed similar ideas. Nick
Montfort et al. (2012:322) speak of studying “software by coding new software”.
David Berry refers to such possible test suites as “coping tests” (Berry 2014).

The possible application of code to test code, to create test suites to examine
codebases as a form of humanities informed criticism, can also be cast as a
continuum of two literacies. Three decades ago Donald Knuth believed that the time
was “ripe for significantly better documentation of programs, and that we can best
achieve this by considering programs to be works of literature” (Knuth 1984). His
WEB language, which lets the same program produce working code as well as an
explanatory narrative about that code, did not find a broad audience—neither in
computer science nor in the humanities (with the odd exception, e.g. Huitfeldt &
Sperberg-McQueen 2008). Knuth was interested in code as a form of literature and
in writing software as a specific kind of literacy. In other words: he was interested in

how two kinds of literacy, that of computer language and that of human-authored



text, could merge. Literacy enables one to write and read, to express and inquire.
We argue that there is a great need to discard the understanding of the literacy of
code and the literacy of literature as different and opposed worlds. Instead, to
develop any valid and adequate mode for scholarly criticism of code, they need to be

understood as variations within a continuum of literacy (cf. Kittler 1993).

Conclusion

Code criticism and code peer review are hardly even nascent in the humanities and
digital humanities. Some work has been done in the realm of Critical Code Studies,
but these fledgling approaches have focused primarily outward from code and have
considered code mostly as a culturally-situated part of a larger socio-technical
system. Almost no examples of thorough code criticism exist that regard code from a
humanities methodological point of view, criticism that asks: what is
methodologically expressed here, how is it argued, and how can we validate it?
Given the large ramifications that digital information and software have for
humanities sources, resources, and methodology, this situation is rather surprising,
and methodologically unhealthy. We have tried to sketch the outlines of an
approach that would do justice to the work that has been done in the realm of code
criticism but that would also self-reflexively turn criticism towards the code that
promises new tools to the humanities. For centuries argument, logic, interpretation
and reason have been both the means to put forward results in the humanities as
well as the tools to judge those results. Humanities methodology is highly self-
reflexive. Methodology now increasingly means digital methodology, but that does

not imply that critical self-reflexivity should disappear: there is no self-evident



correctness of technology just because it is digital technology. Much work still needs
to be done to remediate the critical aspects of humanities scholarship into the digital
realm. We hope this paper may have contributed to the awareness that this is a

critical task of digital humanities as well.

--JZ_20151029_1522



Notes

[1] All statements on the CollateX software pertain to the 2.0.0 version of the Python
port available on the Pypi (https://pypi.python.org/pypi/collatex) Python library
repository. The open source code is available under GPLv3 license at Github
(https://github.com/interedition/collatex/tree/master/collatex-pythonport).

[2] For writerly text see https://en.wikipedia.org/wiki/The _Pleasure_of the Text.

[3] Because scholarly argument at some level is involved it is still relevant to critically
examine elLaborate’s interface, features, and capabilities. This would be tool criticism
however, not code criticism. Tool criticism might at some point very well be
integrated into the approach we are suggesting here, but that is beyond the scope of
this paper.

[3] Obviously visualization constitutes a transformation of the data that is being
modeled too, and therefore it also constitutes an interpretation and argument about
that data. Like tool criticism however, interface critique is out of scope here,
although the code that drives visualization could be subject to code criticism within a

code criticism framework.



References

Andrews, T. L. & Macé, C. (2013). Beyond the tree of texts: Building an empirical
model of scribal variation through graph analysis of texts and stemmata. Literary
and Linguistic Computing, 28(4), pp.504-521.

Bauer, J. (2011). Who You Calling Untheoretical? Journal of Digital Humanities, 1(1).
Available at: http://journalofdigitalhumanities.org/1-1/who-you-calling-
untheoretical-by-jean-bauer/.

Beaulieu, A., Dalen-Oskam, K. van and Zundert, J. van (2012). Between Tradition
and Web 2.0: eLaborate as a Social Experiment in Humanities Scholarship. In T.
Takseva, ed. Social Software and the Evolution of User Expertise: Future Trends
in Knowledge Creation and Dissemination. |Gl Global, pp. 112-129. Available at:
10.4018/978-1-4666-2178-7.ch007.

Berry, David (2014). Critical Theory and the Digital. Critical Theory and
Contemporary Society. New York, London, New Delhi etc.: Bloomsbury
Academic.

Coyne, Richard (1995). Designing Information Technology in the Postmodern Age:
From Method to Metaphor. Leonardo Book Series. Cambridge: The MIT Press.

Galey, A. & Ruecker, S. (2010). How a prototype argues. Literary and Linguistic
Computing, 25(4), pp.405-424.

Hacking, lan (1981). “Do We See Through a Microscope?” Pacific Philosophical
Quarterly 62 (4): 305-22.

Haentjens Dekker, Ronald, Dirk Van Hulle, Gregor Middell, Vincent Neyt, and Joris

van Zundert (2014). “Computer Supported Collation of Modern Manuscripts:



CollateX and the Beckett Digital Manuscript Project.” Literary and Linguistic
Computing, March. doi:10.1093/llc/fqu007.

Huitfeldt, C. and Sperberg-McQueen, C. M. (2008). What is Transcription. Literary
and Linguistic Computing, 23(3), pp.295-310.

Jones, Steven E. (2014). The Emergence of the Digital Humanities. Routledge.

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(1), pp.97-111.

Lehman, M. M. and Ramil, J. F. (2000). Software evolution in the age of component-
based software engineering. Software, IEE Proceedings, 147(6), pp.249-255.

Marino, M.C. (2006). Critical Code Studies. Electronic Book Review. Available at:
http://www.electronicbookreview.com/thread/electropoetics/codology
[Accessed January 16, 2015].

McGann, J. (2013). Philology in a New Key. Critical Inquiry, 39(2), pp.327-346.

McPherson, T. (2012). Why Are the Digital Humanities So White? or Thinking the
Histories of Race and Computation. In M. K. Gold, ed. Debates in the Digital
Humanities. Minneapolis: University of Minnesota Press, pp. 139-60. Available
at: http://dhdebates.gc.cuny.edu/debates/text/11.

Montfort, N. et al. (2012). 10 PRINT CHRS(205.5+RND(1)); : GOTO 10, Cambridge
Mass.: MIT Press. Available at: http://10print.org/ [Accessed January 6, 2015].

Robinson, P. (1989). The Collation and Textual Criticism of Ice- landic Manuscripts
(1): Collation. Literary and Linguistic Computing, 4(2), pp.99-105.

Roelli, P. (2015). Copy text. Parvum Lexicon Stemmatologicum. Available at:
https://wiki.hiit.fi/display/stemmatology/Copy+text [Accessed October 29,

2015].



Unsworth, J. (2000). Scholarly Primitives: what methods do humanities researchers
have in common, and how might our tools reflect this? In Symposium on
“Humanities Computing: formal methods, experimental practice.” London:
King’s College. Available at: http://people.brandeis.edu/~unsworth/Kings.5-
00/primitives.html [Accessed June 27, 2014].

Wark, M. (2001). Essay: Codework. American Book Review, 22(6). Available at:
http://amsterdam.nettime.org/Lists-Archives/nettime-1-0109/msg00197.html
[Accessed October 28, 2015].

Zundert, J. J. van (2012). If you build it, will we come? Large scale digital
infrastructures as a dead end for digital humanities. Historical Social Research—
Historische Sozialforschung, 37(3), pp.165—-186.

Zundert, J. J. van (2015). “Editor, Author, Engineer—Code & the Transformation of

Authorship in Scholarly Editing.” Submitted for publication.



